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ABSTRACT 

(vehicle) load. must be dissipated i n  order t o  
obtain a torque balance on the  al ternator .  
The parasi t ic  speed control ler  accomplishes 
t h i s  function by sensing a change i n  the speed 

The dynamic space power systems under in -  
vestigation use pa ras i t i c  speed control lers  
t o  regulate the ro t a t iona l  speed and fre- 
quency of the alternators.  The speed con-" 
t r o l l e r  regulates speed by applying an in -  
creasing pa ras i t i c  load whenever the useful 
load i s  decreased and speed increases. The 
performance of preseqt control lers  employing 
phase-controlled loading have m e t  major de- 
sign goals, ar$ the control lers  have operated 
successfully i n  various systems fo r  many 
thousands of hours; however, these control-  
lers have performance character is t ics  which 
could be improved such as the reduction o r  
elimination of (1) d i s to r t ion  of the l i n e  
voltage, (2) high neutral  currents, (3) ad- 
d i t i ona l  volt-ampere loading on the al terna-  
t o r ,  (4 )  unbalanced loading of the three 
phases, and ( 5 )  nonlinearity of the control  
character is t ic .  

0 Modifications of control logic are being' 
8 investigated as  ways t o  improve these char- 
4 ac te r i s t i c s .  A modification being inves t i -  

gated i s  an increase i n  the number of stages 
f o r  a given load range with each stage con- 
t r o l l i n g  a reduced amount of pa ras i t i c  load. 
Other modifications include the addition of 
act ive nonlinear networks and power feedback 
networks. 
c i r c u i t r y  is  a lso  being investigated. 
t h i s  approach, a d i sc re t e  amount of parasgtic 
load would be varied f o r  a d i sc re t e  change 
i n  frequency. The paper discusses and eval- 
uates these design concepts. 

The l a rges t  improvement i n  the e l e c t r i -  
c a l  performance character is t ics  of these power 
systems i s  obtained by  using an a l l - d i g i t a l  
speed controller.  However, t he  d i g i t a l  
speed control ler  requires t he  use of a rela- 
t i v e l y  large number of pa ras i t i c  load ele- 
ments. 
available, s ign i f i can t  improvements i n  the  
performance cha rac t e r i s t i c s  can be obtained 
by using sui tably modified exis t ing speed 
controllers.  

A design employing only d i g i t a l  
W i t h  

0 

When only a f e w  load elements are 

reactors  o r  s i l i con  controlled r e c t i f i e r s  
( S C R ' s )  are used as the  load-control elements. 
They control the effect ive value of t h e  vol t -  

, age applied t o  the load resis tors .  In the 
d i g i t a l  method SCR's are also used as t h e '  
load-control elements. With this method t h e  
number of multiple loads applied t o  the alter- 

conducting o r  off.  
demonstrated i n  a developmental system. 

Parasi t ic  speed control lers  employing 
phase-controlled loading are used i n  these 
space power systems: the SNAP-8 system, the 

1 nator is  varied. Each load is  e i t h e r  f u l l y  
This method has no t  been 
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PHASE-CONTROLLFD LOADING SPEED CONTROLLER 

BASIC CHARACTERISTICS - In  the 1200- 
hertz Brayton system, an al ternator ,  a turbine, 
and a compressor are mounted on a common .. 
shaft  (3)*. 
a turboalternator and a turbocompresso~(2).  
The SNAP-8 system uses a turboalternator (5). 
The basic configuration of the e l e c t r i c a l  e@- 
tem i s  the same f o r  any of .these systems. A 
diagram of the %e lec t r i ca l  system is  given i n  
Fig. la. The output voltage of the alterna- 
t o r  i s  three-phase, four-wire. 

loaded al ternator  i e  i l l u s t r a t e d  i n  Fig. lb. 
This character is t ic  is  f o r  a proportional 
controller.  An i n t eg ra l  type of control ler  
which has zero steady-state frequency e r ro r  
can a l s o  be designed (6 )  , b u t  it has not been 
demonstrated i n  a developmental system. 
parasi t ic  load adds t o  the useful load SO 
t h a t  the t o t a l  a l ternator  load i s  a constant. 
The controller senses the  frequency of the 
al ternator  voltage and applies t h e  pa ras i t i c  

0 load required t o  complement a par t icular  use- 
f u l  load. The frequency range is  'established 
by adjusting t h e  control ler  f o r  a minimum 
frequency deviation consistent with system 
s t a b i l i t y .  

of t he  controller.  
t o r  measures the  frequency deviation. 
output of the discriminator is  amplified by 
the power amplifier. This amplifier controls 
the magnitude of the current i n  the parasi t ic  
load resis tors .  Ideally, the load currents 
f o r  each phasq are  equal. The waveshape of 
the phase-controlled current is  i l l u s t r a t e d  
i n  Fig. 3. Varying the  f i r i n g  angle changes 
the effective value of t he  load current. 
Varying the f i r i n g  angle a lso has the e f f ec t  
of changing the  phase angle between the  ap- 
plied voltage and the  fundamental component 
of t h e  nonsinusoidal current (7).  The cur- ' 
rent  fundamental lags t he  voltage as i n  an 
inductive c i r cu i t .  The r e s u l t  is  t h a t  t he  
al ternator  must be able t o  suppqy an inductive 
load i n  addition t o  the  usual design require- 
ment, t h a t  is, the apparent-power Teequire- 
ment i s  larger.  Since the  inter\?& impedpce 
of an al ternator  i s  not zero, th& nonsinuboidal 
current causes d i s to r t ion  i n  the al ternator  
output voltage. 

The 400-hertz Brayton system usee ' 
. 

The ideal  load sharing of a pa ras i t i ca l ly  

The 

Figure 2 is a functional block diagram 
The frequdncy discrinclna- 

The 

*Numbers i n  parentheses designate Refer- 
ences at end of paper. 

' ' Parasi t ic  spe 
1 phase-controlled 1 
, nonlinear load-fre 
1 Figure 4 i l l u s t r a t e s  

which holds fox a cons 
l i n e  voltage. Phase-c 
generates appreciabla neutral  C 
vestigations have shown t h a t  the 
value of neutral  current is  equal t o  -&he 
s i t i c  load current st IU 
anglr . 
of phase-controlled loading are (1) t h e  eddi- 
t i ona l  volt-ampere loading on the al ternator ,  

1 (2)  distor t ion of t he  l i n e  voltage, and (3) the 

The character is t ics  inherent i n  t h e  use 

I @;eneration of neutral  current. The character- 
i s t i c s  which aepend only upon c i r c u i t  design 
are  (1) the possible unbalanced loading Of 
the three phasks and (2) the nonlinearity of 
the control character is t ic .  

REDUGTION OF APPARENT-P(MER REO-, i cmm DmTmTION, m ~ E V H I A L  cmm - 
.Gilbert  (7) has shown how the use of multiple 

I parasi t ic  loads sequentially actuated lessen8 
I the  undesirable effects of an additional 

apparent-power requirement and d i s to r t ion  of 
the  al ternator  current. The 400-hertz Bray- 
ton and the 1200-hertz Brayton s p e d  control-  

l l e r s  employ three sequentially-actuated lQads, 
whereas the  SNAP-8 system employs onlq.one 
pa ras i t i c  load. Two of the t h r e i  loads i q  
the  Brayton systems operate over ,the rpoma 
control range. The t h i r d  load serves two I 

functions: 
1. It provides speed control capab i l i t y  

when the  al ternator  develops more than its 
rated power aa may occur during cold atartup. 

' 

1 2. It serves as a redundant load should 1 one of the first Kwo loads fail. 

1 fur ther  division of loads. 
An'improvement being investigated i s  a 

!The r e s u l t s  of 
Gilbert indicate that by using four ac t ive  
loads, the  additional apparent-power require: 

i ment f o r  a 0.8-lagging-power-factor useful  
load is reduced from 3.0 percent t o  1.3 per-, 
cent. For the  same load condition, t h e  max-  
imum t o t a l  hasmonic d i s to r t ion  of the  alter-, 
nator current is reduced from 18 percent t o  
9.5 percent. Less current d i s to r t ion  gives 
l e s s  voltage dis tor t ion.  The voltage Iregu- 
l a t i o n  i n  these systems depends t o  'sane ex- 
t e n t  on the  magnitude of the voltage d i s to r -  
t i on  (2,3,4). Therefore, an improvement i n  
the  voltage regulation should occur. 
degree of t h e  improvement depends on t h e  type 
of voltage regulator used i n  the  system. 

The 

. 
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A s  previously indicated, by reducing the  
full-conduction .current for a load, the maxi- 
mum value of the neutral  current is  decreased. 
Doubling the number of act ive lo&s then re- 
duces the maximum value of the  neutral  cur(-..> 
rent  by about 30 percent, 

amount of, improvement f o r  each lo& division 
decreases rapidly with increasing number of 
loads, The number of loads i n  a given sys- 
t e m  may be l imited by  other- faceore. 
system considerations, such as  s i ze  and weight, 
may determine the max imum number of load divia  
sions. 

Per.2 (9 )  gives experimental r e s u l t s  which 
indicate t h a t  fur ther  improvement i n  t o t a l  
harmonic current d i s to r t ion  may not occur upon 
fur ther  division of loads. 
l imitations,  the f i r i n g  c i r c u i t s  require a 
minimum f i r i n g  angle t o  turn on the SCR's. 
A s  a consequence, the load is  not on f o r  the 
f u l l  180 degrees of t he  sine wave and the  t o t a l  
harmonic d i s to r t ion  of the current does not 
go t o  zero. This e f f e c t  i s  cumulative and 
causes an hxperimental d i s to r t ion  greater  than 
the theoret ical  maximum. Therefore, i n  order 
t o  obtain the most improvement i n  the above 
character is t ics ,  the f i r i n g  angle must be 
minimized. 

load  unbalance between phases of about '5 per- 
cent of the useful a l t e rna to r  output power  
has been obtained experimentally. The un- 
balance, i f  severe, may cause the a l t e rna to r  
armature design temperatures t o  be exceeded. 
The unbalance i n  the pa ras i t i c  load is  a func- 
t i o n  of the c i r c u i t  component$ used. 
ure 5a i s  a cha rac t e r i s t i c  obtained during the 
i n i t i a l  t e s t ing  of a speed control ler  f o r  t he  
1200-hertz Brayton s y s t e m .  By making ce r t a in  
adjustments and without changing the  basic 
c i r c u i t  design, character is t ics  as i n  Fig. 5b 
were obtained. The maximum unbalance as shown 
i s  about 2 percent of the rated al ternator  
output power .  

mum unbalance of about 1.5 percent of the 
rated al ternator  p o w e r  w a s  obtained (2). New ' 

c i r c u i t  designs are being considered which 
w i l l  give a max imum unbalance of l e s s  than 
1 percent without requiring detai led adjust-  
ments. \ 

Feedback c i r c u i t s  are also being can- 
sidered which allow the  application of un- 
balanced useful loads by automatically ad- 

' 

The r e su l t s  of Ref .  7 indicabe t h a t  tQe .' . 

Csrj-,ain 

Because of design 

PARASITIC LOAD UNBALANCE - A pa ras i t i c  

Fig- 

I n  the 400-hertz Brayton system a m a x i -  

changing gsin and e 
The power f ac to r  of the total alterne@r 
load w i l l  actual ly  vary over some range. In 
particular,  t he  phase-controlled load has a 
power  factor  which v d e s  w i t h  the magnitude 
of the load (4). 
therefore, would be l imited to the  value ob- 
tained at the  lowest gwer f ac to r  of the 
t o t a l  a l ternator  load. 
' 

A block diagram of a l imit ing scheme is  
shown i n  Fig. 6. The al ternator  produces a 
constant output power and, i f  the parer fac- 
t o r  is  constant, a constant output current. 
A t  rated l i n e  current t he  current limiter 
produces no output signal.  
f u l  load is  applied t o  one phase, t he  cur- 
r en t  limiter on t h a t  phase generates a s igna l  * 

The a l ternator  current, 

When excess use- 

which causes the pa ras i t i c  load current  t o  
decrease. The a l t e rna to r  l i n e  current re- 
turns  t o  within a s m d  e r ro r  of  its rated 
value. This  e r ro r  is  determined by design- 1 
of the  current l i m i t e r  and by  the  requlre- 
ment of system s t a b i l i t y .  

some of the considerations involved i n  the , 
design of a current limiter. It is assumed I 

t h a t  no change i n  frequency occurs f o r  the 
application of an unbdanced useful load. 
Figure 7a is  a functional block diagrem of 
the  limiter. 
f u l  load current (%) i s  zero. 
a s i t i c  load current is equal t o  the  rated 
al ternator  current, o r  Ip = C. The e r r o r  
s ignals  E 1  and E2 are also zero. The 
block diagram i n  terms of t r ans fe r  functions 
i s  obtained as i n  Fig. ,7b. The current lim- 
i ter  and the speed control ler  axe assumed t o  
be simple lag c i r cu i t s .  
the  e r ro r  E 1  i n  terms of Laplace +ransfoms 
is  _ _ _ -  --- 

./.. , El(S) = Ip(S) + %(SI - C 

I The following discussion i i l u s t s a t e s  

I 

m e n  the par& 
Assume t h a t  i n i t i a l l y  t h e  use- 

. 

The equation for 

_ -  

r .  
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where S is  the Laplace operator. This is e 

rewrit ten as 

* =  1 

W) 1 + KLKp 
... > 

(1 + 7 ~ s )  (1 + Tps) 

The f i n a l  value fo r  the error  i s  

E1(S = 0) = 
1 + KLKp 

when I i s  a s t ep  input of uni ty  magnitude. 
R e a i s t i c  values f o r  'rL and T are P 

7p = 0.001 sec 
T~ = 0.01 sec 

Further analysis indicates  t h a t  i f  KLK 2, 
then there w i l l  be no osc i l l a t ions  i n  &e- 
e r ro r  El. However, t he  steady-state e r r o r  
i s  then 

*El(S = 0) = 1 < 0.34 
1 + 2-. . .I. 

I n  order t o  obtain an e r r o r  l e s s  than.0.3 
and. a nonoscil latory response , cDmpensating 
networks w i l l  be included'in the f i n a l  design. 

LINEARIZATION OF TKE LOADING CHARACTERIS- 
TICS - A s  was discussed previously, the para- 
s i t i c  load-frequency character is t ic  i n  pre- 
sent control lers  i s  nonlinear. A t yp ica l  
character is t ic  obtained i n  system t e s t ing  is 
shown i n  Fig. 8. For a given control  range, 
the slope of t he  load-frequency characteris-  
t i c  (on the gain) a t  some operating points 
may be su f f i c i en t ly  large to'cause s ign i f i can t  
pa ras i t i c  load fluctuations.  'phe f luctuat ions 
cause voltage and a l t e rna to r  power fluctua- 
tions. In systems where these f luctuat ions 
occurred, the control range w a s  extended. 
Lowering the gain i n  this fashion eliminated 
the f luctuat ions (2,3). 

an approach t o  l i nea r i ze  the control  charac- 
t e r i s t i c .  An electronic  mult ipl ier  i s  inser ted 
i n  the feedback loops of a high gain amplifier 
and the f i r i n g  c i r cu i t .  The f i l t e r  i s  required 
i n  order t o  prevent a high-frequency modulation 
of the f i r i n g  angle. 
loop i s  a l i nea r  function of the frequency. 
The mult ipl ier  measures the instantaneous value , 
of power dissipated i n  the  resis tor .  The f i l t e r  

Figure 9a is  a block diagram i l l u s t r a t i n g  

The input t o , t h e  control  

' i  
* '  I 

I 

where S is  the Laplace operator. Rewriting, 

For a s t ep  change i n  frequency of u n i t  magni- 
tude, the steady-state value of paras i t i c  
power i s  T 

AK1 
i- m1K$3 

P(S = 0 )  = 

If the product A K l K S 3  >> 1, then 

1 P(S * 0) = - 
KzK3 

Now the change i n  pa ras i t i c  power is  independ- I 
ent  of the nonlinear gain K1. The gains 
K2 ana K 3  are selected t o  obtain the cor- 1 
r e c t  steady-state gain f o r  the speed control-  i 
ler. Since K 1  varies,  the gain.of the an- 1 
p l i f i e r  A is  selected to make,the product ; 

The values of the time constants T~ and T ~ '  
are the remaining f sc to re  which determine sye- 1 
t e m  s t ab i l i t y .  Realistic values of 'rl and j 
~3 are: 

'cl = 0.001 sec and T~ * 0.005 see I 

Selecting a steady-state gain of 10 percent 
per hertz (typically,  1 2  1/2 percent per 
hertz has been used i n  previous power systems) 
and the other constants 86 mentioned above, 
the t ransfer  function becomes \ 

1.40(0.005s i 1 a= 10.0055 + l)(O.OolS +)1) + 14 



This t ransfer  function holds f o r  s m a l l  changes i n  
speed. Further analysis reveals t h a t  the  re- . 
sponse of the power i s  a damped osc i l l a t ion  
which dies out i n  about 0.008 sec. The r e -  
sponse varies with changes i n  the  value of- K1. 
The response i s  increasingly osc i l l a to ry  with 
increasing values of K1. A compensating net-  
work w i l l  be included i n  the f i n a l  design t o  
obtain a be t t e r  response. 

A SPEED-CONTROLU8 DESIGN - Figure 10 is a 
block diagram of a new speed-controller design. 
Several charac te r i s t ics  not previously diSCUSSed 
are incorporated i n  t h i s  design. One character- 
i s t i c  i s  tha t  only one of the  multiple loads uses 
phase-controlled loading. Another is the  provi- 
sion fo r  inhibit ing the  total-l ine-current l i m i t -  
e r s  i n  case the  a l te rna tor  i s  required t o  produce 
more than i t s  rated output power. 

The amplified output of t he  frequency d i s -  
criminator i s  fed t o  three  summers - Al, A2, 
and AJ. If the  l i n e  current l imi t e r s  a re  in- 
active, the f u l l  s igna l  i s  provided t o  the  l eve l  
detectors and t o  summing junctions B1, B2, a@ 
Bg. The outputs of these summing junctions are 
applied t o  the  inputs of the  i so la t ion  ampli- 
f i e r s .  The magnitude of the phee-control led 
load i n  r e s i s to r s  IA, lB, and 1C is  l i n e a r l y  
re la ted  t o  the  output of the associated i so la -  
t i on  amplifiers. Therefore, f o r  the conditions 
specified, the  load i s  d i r ec t ly  proportional t o  
the frequency deviation. 

The l eve l  detectors fo r  each phase a re  s e t  
t o  activate a t  equal increments of t he  frequency 
deviation. When a l eve l  detector tu rns  on i ts  
associated load, a s igna l  is  provided by the  
conditioner and f i l t e r  t o  r e se t  the  phase- 
controlled load t o  zero. This load t ransfer  
takes place f o r  each multiple load i n  t h e  speed 
controller.  The resu l tan t  speed control 
charac te r i s t ic  i s  given i n  Fig. 11. The major 
nonlinearity is  the  s m a l l  dead-band t h a t  w i l l  
occur a t  each load transfer.  The reason f o r e  
using t h i s  scheme instead of multiple phase- 
controlled loads w i l l  be discussed l a t e r .  

The function of t h e  "cross-over detector" 
is  t o  apply the  fixed loads only when the  l i n e  
voltage goes through zero. 
the  f i r i ng  c i r c u i t  t o  apply the  load with a very 
s m a l l  f i r i ng  angle. Therefore, the  l i n e  voltage 
d is tor t ion  contributed by  each of the  multiple 
fixed lo@s is  a minimum. 

The l i n e  current regulator previously d is -  
cussed provides a s igna l  f o r  t he  reduction of 
paras i t ic  load current through summers C and A. 
The regulator override logic inh ib i t s  t h i s  ' 

This function enables 

regulation i f  the frequency de'viation i s  aboV@ 
some preselected value o r  i f  t h e  a l t e rna to r  
l i n e  current is  greater than i ts  rated value 
i n  each phase. The override function is  Pe- 
quired t o  prevent possible destructive high 
speeds when the  system develops more than i t 8  
rated power. 

and matching of f i r i n g  c i r c u i t s  to 'ob ta in  the  
same operating charac te r i s t ics  is  much simpler 
when only three such c i r c u i t s  are used, and 
the  phase-controlled load i a  allowed t o  have 
a high percentage unbalance between phases. 
This unbalance w i l l  not accumulate and raise 
the  t o t a l  a l te rna tpr  unbalance as would occur 
i f  multiple phase-controlled loads were used. 
A controller using s i x  multiple loads requires 
18 f i r i n g  c i rcu i t s .  The remaining 15 f i r i n g  I 

c i r cu i t s  are readi ly  matched since t h e  load 
they control i s  e i t h e r  f u l l y  on OT f u l l y  off.  
A disadvantage of this approach s t he  addi- 

1 
~ only one phase-controlled load. 

m e r e  a re  two m a o r  reasons f o r  using 
The design 

t i ona l  logic complexity required. t 
I 

T h i s  new design incorporates iQeas t o  
, improve the  performance characte i s t i c s  pre- 

viously mentioned. The experimeztal l imiQa- 
t i ons  discussed by  Perz are la rge ly  overcome 
by  this design. 

DIGITAL! SPEED C C N T R O m  

BASIC CHARACTERISTICS - The load sharing 
charac te r i s t ic  f o r  t h e  d i g i t a l  speed control-  
l e r  i s  given i n  Fig. 12. The charac te r i s t ic  
i s  shown when, a rb i t r a r i l y ,  8 multiple loads 
a re  used over the  normal contrbl range. A r -  
b i t r a r y  scales were selected fo r  t he  ordinate 
and abscissa t o  f a c i l i t a t e  the  following d i s -  

load i s  equal t o  t h e  a l te rna tor  output power 
and t h a t  t he  frequency is  at i t s  rated value. 
When the u s e f u l  load is  decreased t o  7.5, a 
power difference of 0.5 exists which increases 
the  speed and e l e c t r i c a l  frequency of t he  
alternator.  The speed cont ro l le r  measures 
the  frequency deviation. 
exceeds 1.0, the  con t ro l l e i  applies 'a pa ras i t i c  
load of 1.0 a f t e r  a cer ta in  delay t i m e .  This 

I delay time i s  dependent on t h e  design of t h e  
speed controller. Now an overload of 0.5 . 
ex i s t s  which decreases t h e  freqdency. The 
speed controller senses when the  daviation 
is  l e s s  than 1.0 and, a f t e r  a ddlay t h e ,  
removes the paras i t ic  load. The 'load condi- 
t ions  are back t o  the  stakting p i n t  and the  

' cussion. Suppose. t h a t  i n i t i a l l y  the  usefu l  

When the  deviation 



cycle repeats. The frequency of the fluctua- 
t ion i s  s w h  t h a t  the time-average pa ras i t i c  
load i s  0.5. When the useful load is reduced 
t o  7.0, there w i l l  be no f luctuat ions i f  the  
pa ras i t i c  load of 1.0 exactly complements the 
al ternator  output power. The above discus- .- 
sion applies equally t o  any load condition o r  - 
frequency deviation. Exact load complements 
a re  d i f f i c u l t  t o  achieve i n  t h i s  type of 
system; therefore, f o r  all pract ical  applica- 
t ions there w i l l  always be load fluctuations,  
The magnitude 09 t he  al ternator  load fluctue- 
t i on  i s  equal t o  the magnitude of the pa ras i t i c  
load step.  

r en t  f o r  the f luctuat ing load is shown i n  
Fig. 13. 
current fo r  nearly the f u l l  360 degrees of 
the s ine wave o r  not a t  all. Computations 
have shown t h a t  f i r i n g  angles of less than 
1 degree can be obtained. 
load t h a t  i s  f luctuat ing w i l l  conduct f o r  an 
integral  number of cycles. Since there  is 
v i r t u a l l y  no harmonic d i s to r t ion  of the para- 
s i t i c  l o a d m r r e n t ,  haxmonic d i s to r t ion  of 
the l i n e  yoltage i s  minimized. Some rieutral 
current w i l l  flow u n t i l  all three phases of 
the f luctuat ing load are turned on and again 
during turnoff. The loads are balanced t o  the  
degree t h a t  the pa ras i t i c  load r e s i s t o r s  are 
matched. The load balance is  also a function 
of t he  balance of the  l i n e  voltage. In addi- 
t ion,  t he  absence of phase-controlled current 
implies t h a t  t he  apparent-power requirement 
of the al ternator  i s  not increased. 

intent ional ly  nonlinear. The resul t ing para- . 

- 

The waveshape of the parasi t ic  load cur- 

Each of the multiple loads conducts ~ 

The par t icular  

- 

The load-frequency cha rac t e r i s t i c  is  now 

s i t ic  load f luctuat ions may cause undesiiably I 

large t o t a l  a l ternator  load and l i n e  voltage 
fluctuations.  Therefore, the select ion of an 
optimum pasasi t ic  load s t e p  is important. For 
example, preliminary calculations show t h a t  
i f  8 multiple loads were used i n  the  400-hertz 
Brayton system, the maximum voltage modulation 
would be about 3 percent. 
modulation fo r  systems employing phase- 
controlled loading i s  about 0.5 percent. 
maximum frequency modulation with 8 multiple 
loads (for a 1 percent control range) would 
be about 0.06 percent. In present systems 
frequency modulation i s  about 0.01 percent. 

gram of a d i g i t a l  speed control ler  design is  
given i n  Fig. 14. The input t o  t h e  sensing 
c i r c u i t  i s  the l i n e  voltage. Its output i s  

Maximum voltage 

The 

A SPEED CONTROLLEB DESIGR - A block dia-  

t 

a square wave with the  same-frequency 9. f 
input voltage. 
wave is d i g i t a l l y  cornpared w i t h  a mqataat * -  

frequency reference. The output %f %hr? ~ o m -  
parator i s  a series of rectad@;ufm pulees, j 

These pulses gate a high-frequency pulse gen- 
erator. After a delay time determi e - I  

period oounCer, %he high-frequency 

The frequency of tug squm.ei /. 

@ i  
sampled. The number of high-freque 8 .  - 
t o r  frequency and c,he constant frequenoy ref- 
erence. The counter s to re s  this number. The 
decode% then determines the .number of p a r a s i t i c  
loads t o  be applied. Since the  deviation can 
be posit ive o r  negative, the low frequency 
detector i s  used t o  prevent application of 
load below rated frequency. 

PERFORMANCE REQUIREMENTS - A speed con- 
t r o l l e r  has been designed f o r  a 400-hertz 
system using conventional integrated c i r c u i t  
logic. 
frequency deviations of 0.0025 percent of 
rated frequency w i t h  a sampling period of 
50 milliseconds; however, a f i n a l  design must 
take in to  consideration the  system i n  which 
it w i l l  be used. 

System s t a b i l i t y  considerations deter-  
mine the accuracy and the  sampling period re- 
quired of a speed controller.  
previously, the number of multiple p a r a s i t i c  : 
loads t h a t  can be used is  of ten fixed. 
f o r  example, that 8 act ive loads are available , 
f o r  the 400-hertz Brayton system (9 kW ne t  9 

output rating).  
s t ep  would be 1.12 kW (about 9 kW t o t a l  f o r  
8 steps).  
ference i s  1.12 kW. For a rated power dif-  ' ' 
ference (9  kW) the acceleration rate of the 
turboalternator is 'about 1000 rpd/sec (this 
value can be calculated from inftormation i n .  
R e f .  10). Assuming s m a l l  speed changes, b 
1.12 kW difference gives a rate of 1 2 5  rpm/sec. 
This r a t e  is  equivalent t o  a ratb of about 
4.2 Hz/sec. With a t o t a l  control range of 
~ E z ,  t he  frequency deviation between load 
s teps  is 0.5 Hz. 
speed, the control ler  must be able t o  measure 
deviations of less than 0.5 Hz and apply the 
proper loads before the deviation exceeds 0.5 Hz 
change. Therefore, the sampling period of t h e  
speed control ler  must not be g rea t e i  than 
0.12 sec. 
speed control ler  appear feasible. 

This design is  capable of measuring 

A s  w a s  mentioned 

Assume, 

!hen each pa ras i t i c  load 

Therefore, the maximum power dif-  

For proper control of t he  

These performance limits f o r  the 



CONCLUDING REMARKS 

lmprovement i n  the electrical .  perform- 
ance character is t ics  of space power systems 
can be obtained by modifying present speed -.* 
control ler  designs o r  by using an a l l - d i g i t a l  ., 
design. The select ion of a design depends 
upon limitations of the system i n  which it w i l l  
be used. 
ber of parasi t ic  load r e s i s t o r s  t h a t  can be 
used. 

For exampl;?, i f  the number of multiple 
loads must be small (say 4 t o  6) and i f  t he  
voltage and frequency modulation must be kept 
t o  a minimum, then the phase-controlled load- 
ing  speed control ler  would be selected. But, 
i f  the number of multiple loads can be l a rge  
(say 32), then the d i g i t a l  speed control ler  
would be selected. The advantages of the 
d i g i t a l  speed control ler  are:  

requirement on the alternator.  

i s  at a minimum.  

zero. 

unbalance. 

can be quite accurate with high repeatabi l i ty .  

the voltage and frequency modulation inherent 
i n  the d i g i t a l  speed control ler  can approach 
the values obtained w i t h  the  phase-controlled 
method. 
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Figure 6. - Line diagram of cu r ren t  l im i t ing  for  one phase of t he  alternator output. 
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(B) BLOCK DIAGRAM OF LIMITER IN TERMS OF TRANSFER FUNCTIONS. 
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Figure 11. - Control characterist ic of speed control ler  when 
one phase-controlled load i s  used. 
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Figure 12. - Load shar ing  for the  digital speed 
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Figure 13. - Parasitic cur ren t  waveshape for the digital speed controller. 
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Figure 14. - Block diagram of the  digital speed controller. 
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